返回 第三百二十七章:威腾:这人真烦!  大国院士 首页

上一页 目录 下一页

『章节错误,点此报送』

第三百二十七章:威腾:这人真烦![2/3页]

  日,我们对这套方法和方程背后更深刻的数学、物理以及运动深涵,依然知晓的浅浮。”

  “就好像高速飞行的飞机,受限于NS方程的数值求解的精度和效率,它的外形设计我们仍然需要依赖风洞进行大量的实验,数值求解至今不能完全替代风洞实验。”

  “飞行在天空的客机为什么不会突然解体?平静的大地为什么不会自行塌陷,流体的扩散效应到底是什么在约束”

  “这一切在过去对于我们来说是神秘而未知的。”

  “但是在今天,是时候来给予它们答案了!”

  开场白结束后,徐川摁了一下手中的控制笔,放映出来的PPT文案翻过一篇新章。

  “OK,题外话结束,现在正式进入正题。”

  “我相信在来这里之前,在座的各位都已经读过了我的论文。而对于论文中的证明,我将不再完整的复述一遍。”ъΙQǐkU.йEτ

  “今天的报告会,我阐述的重点,将在证明NS方程的关键节点,以及所使用的新数学工具‘微元构造法’上。”

  “我也相信,诸位感兴趣的应该是这些东西。”

  “话不多说,接下来进入报告.”

  “不可压缩Navier-Stokes方程描述了黏性不可压缩齐次流体的运动.根据Newton力学中的质量守恒和动量守恒,我们得到如下方程:

  【tuνu+(u·)u=p+f,·u=n∑i=1iui=0】

  随着徐川开始正式进入报告,台下的听众都收拢了精神,全神贯注的盯着离自己最近的幕布,目光落在了反映出来的图片和算式上。

  所有人都在仔细地听着,不愿意放过任何一个细节,不愿意错过任何一个瞬间。

  “.一般来说,NS方程的推倒是对流体微团进行受力分析列牛二律。我们可以对流体不做任何假设,那么μ,密度等,同样都会对三个方向有偏导数,方程会非常复杂.”

  【3∑i=1(xi(H(φ)φxi)=0).】

  “.将激波后的流动用无旋流描述,则通过引入位势函数φ,可以将Euler方程组简化为一个二阶非线性偏微分方程,称为位势流方程。”

  “.”

  讲台上,徐川手中握着控制笔,看向投影荧幕的同时沉稳有序的讲解着NS方程的关键证明步骤。

  对于解决流体方面的难题来说,无论是欧拉方法还是拉格朗日方法都是必备的。

  欧拉法是对欧氏空间中的每个点的速度和受力等情况的描述,但是该点对应的流体粒子可能会变更;而拉格朗日法是跟踪每个流体粒子。

  这两种方法是过去数学家研究NS方程和流体力学时最常用的手段之一了,并不需要他过于重点讲解,所以徐川也就直接带过了。

  而接下来,则是证明NS方程过程重点!

  以数学物理体系中微元流体为基础,引入集合的概念,将微分方程、拓扑几何和偏微分方程贯穿。

  这是他证明NS方程的关键工具,也是将拓扑几何这个概念引入微分方程和偏微分方程的核心点。

  大礼堂中,陶哲轩坐在德利涅身边,认真的听着报告。

  而当‘微元构造法’出现的那一刻,他更是直接就坐直了身体,目光紧紧的盯着屏幕。

  随着徐川的讲解,他眼神中也跳动着炯炯有神的光芒,原本还有着的一丝疑惑,伴随着讲台上的声音逐渐散去。

  “原来如此,他真是个天才妖孽!”

  弄懂了所有的关键点后,陶哲

第三百二十七章:威腾:这人真烦![2/3页]

『加入书签,方便阅读』

上一页 目录 下一页